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Abstract

Objectives: To construct an artificial neural network (ANN) model that can predict the presence of acute CT findings
with both high sensitivity and high specificity when applied to the population of patients ≥ age 65 years who have
incurred minor head injury after a fall.
Methods: An ANN was created in the Python programming language using a population of 514 patients ≥ age 65
years presenting to the ED with minor head injury after a fall. The patient dataset was divided into three parts: 60%
for “training”, 20% for “cross validation”, and 20% for “testing”. Sensitivity, specificity, positive and negative predictive
values, and accuracy were determined by comparing the model’s predictions to the actual correct answers for each
patient.
Results: On the “cross validation” data, the model attained a sensitivity (“recall”) of 100.00%, specificity of 78.95%,
PPV (“precision”) of 78.95%, NPV of 100.00%, and accuracy of 88.24% in detecting the presence of positive head CTs.
On the “test” data, the model attained a sensitivity of 97.78%, specificity of 89.47%, PPV of 88.00%, NPV of 98.08%,
and accuracy of 93.14% in detecting the presence of positive head CTs.
Conclusions: ANNs show great potential for predicting CT findings in the population of patients ≥ 65 years of age
presenting with minor head injury after a fall. As a good first step, the ANN showed comparable sensitivity, predictive
values, and accuracy, with a much higher specificity than the existing decision rules in clinical usage for predicting head
CTs with acute intracranial findings.
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1. Introduction

Current evidence suggests that patients ≥ 65 years old
presenting to the emergency department (ED) with minor
head injury after a fall should receive a head CT scan.
However, only a small percentage of these patients are ac-
tually found to have acute findings associated with the
scan. Therefore, predictors for this class of patients that
are both sensitive and specific would be desirable.

In 2004, injuries resulted in 31 million ED visits, rep-
resenting 32% of all visits to the ED for any reason [1, 2].
Elderly patients are at the highest risk for both fatal and
nonfatal injuries, with mortality and hospitalization rates
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for injuries reported to increase dramatically [1, 2]. Falls
are the most common mechanism of injury for older pa-
tients visiting the ED, and are the most common cause
of injury-related death [1, 2]. Due to the generally in-
creased incidence of injury, specifically closed head injury,
head CT is frequently ordered [3]. However, CT scans are
costly and are recognized to carry a radiation risk [4, 5];
specifically, head CTs obtained because of a fall account
for the expenditure of millions of dollars annually in the
United States [6].

In 2001, a study was published to determine predic-
tors of positive CT findings for patients of all ages with
minor head injury, resulting in a highly sensitive decision
rule known as the Canadian CT Head Rule (CCHR) [6].
Notably, an age ≥ 65 was a sensitive predictor of positive
CT findings, but this age group was not further stratified.

Several other widely noted evidence-based decision rules
for the general population [6, 7, 8] also indicate that age
above 60 or 65 years places the patient at high risk for an
abnormal head CT after mild head injury. These various
decision rules have been compared to determine if one or
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another more readily identifies the patient who will benefit
from head CT [9, 10, 11, 12, 13, 14, 15], but none specifi-
cally addresses the population of patients over age 65 who
potentially have an intracranial injury, particularly after
a fall or other relatively minor mechanism. Currently, no
definitive evidence exists regarding how to evaluate elderly
patients after a fall, although a promising paper recently
has been published using the non-age related New Orleans
Criteria [16], predicting 100% of the abnormal head CT
scans in an elderly population in a retrospective fashion.

A recent retrospective study [17] of 2149 elderly pa-
tients older than 65 years presenting to the ED with minor
head injury found that 2.18% (47) of these patients had
pathological findings, with only 0.14% (3) requiring neu-
rosurgical intervention. Thus, while age ≥ 65 is inherently
a 100% sensitive predictor for patients in the ≥ 65 age
group, it has a low positive predictive value (PPV) due to
only a small percentage of these positively-predicted pa-
tients actually having positive findings. Additionally, we
note for clarity that the specificity is inherently 0% due
to predicting all patients in this age group to be positive,
thus missing all negative cases.

To contain costs while providing excellent care, it is
important for emergency physicians to know if and when
a patient will benefit from usage of a head CT scan.

1.1. Artificial Neural Networks
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Figure 1: Artificial Neural Network Diagram

Artificial neural networks (ANNs) are mathematical
models that are capable of learning highly complex, non-
linear relationships between a given set of input features
[18, 19]. Due to their complex learning abilities, ANNs are
widely used and studied in both practical and theoretical
computer science research in machine learning and artifi-
cial intelligence. Given the ability to learn complex, non-
linear patterns from data, ANNs have great potential in
being able to predict outcomes in complex medical cases.

As an example, a study was performed in 2001 to de-
termine the effectiveness of using ANNs to predict CT
findings in pediatric patients presenting with head trauma

[20]. The authors collected data for pediatric patients who
had presented to the ED with closed head injury and sub-
sequently received a head CT scan, and then used this
data to compare the performance of an ANN, a logistic
regression model, and clinical judgment by pediatric EM
physicians in predicting CT findings. Notably, the ANN
was found to be both significantly more sensitive and more
accurate than clinical judgment alone, with almost equal
specificity. The ANN was also more sensitive than the
logistic regression model.

Appendix A discusses ANNs in more depth, with spe-
cific regard to the type and formulation used in this study,
and uses information gathered from various sources [18, 21,
22, 23]. The interested reader is encouraged to consult this
appendix and the related sources for further information.

1.2. Objectives

The primary objective was to build a preliminary ANN
model that could predict, with both high sensitivity and
high specificity, the presence of CT findings in patients
≥ 65 years old who presented to the ED with minor head
injury after a fall.

2. Methods

2.1. Study Design

A retrospective cohort study was performed. All pa-
tient records collected were de-identified prior to continu-
ing with the study. The study was reviewed as UMCIRB
#08-0773 and deemed exempt by the University and Med-
ical Center Office for Human Research Integrity. Patient
privacy and confidentiality of medical record information
were the only ethical considerations deemed necessary.

2.2. Study Setting & Population

A retrospective chart review obtained 514 patients ≥ 65
years old presenting or transferring to the ED of a Level
1 Trauma Center teaching hospital with minor head in-
jury after a fall between January 1st 2008 and September
30th 2013. The hospital is located in the Southeastern
United States, with an ED volume of 90,000 patients dur-
ing 2008, rising to approximately 120,000 in 2013 by the
end of the study. To be eligible for inclusion, patients must
have presented or transferred to the ED or its Fast Track
area during the indicated time frame with minor head in-
jury after a fall of any sort, including major trauma, and
subsequently received a head CT that was interpreted for
presence of acute findings. The final diagnosis must have
contained ICD-9 codes for “fall” or “traumatic injury”
(958.0-959.0). Physician judgment and standard accepted
medical practice determined whether a patient received a
head CT scan.

Prior to collection of study data, ten charts were ran-
domly selected and all investigators extracted the pre-
scribed data from each chart. Comparisons of the data
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obtained by each investigator were made to assess con-
sistency in interpretation of patient records and findings.
The kappa statistic for inter-rater reliability was 0.86 and
demonstrated good reliability. Collection of 514 patients
required review of 5 years of medical records to obtain
227 positive findings. Since the prevalence rate of posi-
tive cases for this patient population is quite low, choice-
based sampling [24] was used in which approximately equal
numbers of patients for each class (positive vs. nega-
tive acute findings) were purposefully gathered in order
to avoid skewed classes. Rare classes can lead to poor
learning in ANNs and other related algorithms [25], and
we discuss this further in section Appendix A.8. Any pa-
tients with missing data points were discarded, resulting
in the final number of 514 patients.

2.3. Measurements

For each patient, several pieces of data were collected
to be used as “features”, including: gender; presence of
dementia; use of aspirin or anticoagulants; presence of in-
jury above the clavicle; type of fall; and presence of acute
findings on head CT. Dementia was noted from the pa-
tient’s past medical history, or from the current provider’s
note. A patient was considered to have a memory deficit if
he or she had a change from their baseline memory status.
Anticoagulants were categorized as: aspirin, clopidogrel,
warfarin, fractional based or low molecular weight hep-
arin. Presence, location, and type of injury were noted
from the physician’s note, and the discharge or admission
diagnoses recorded in the chart for that visit. Trauma
above the clavicles was considered as any physical evidence
of trauma above the clavicles. The type of fall was char-
acterized as from a bed, from sitting, from standing, or
from a greater height. If the treating physician was un-
able to obtain any information, it was noted as “unable to
obtain”, and subsequently, these patients were removed.
The official radiologist readings were used to assess pres-
ence of abnormal head CT. The word “acute” needed to
appear in the radiology report describing the intracranial
findings in order for the image to be considered “positive”.
The neurosurgical intervention rate was not recorded for
this set of patients. Each of the features was numerically
coded as either present or absent.

2.4. Data Analysis & Study Protocol

An ANN of the type thoroughly described in Appendix
A was created and trained in the Python programming
language using the Keras [26] neural network library, and
code was written to process the patient datasets, build
and train the ANN models, identify ideal training settings
(“hyper-parameters”), and calculate relevant statistics, as
reported in section 3.

In this study, the presence of acute CT findings was
treated as the target outcome (“class”), and all other fea-
tures were treated as inputs. The dataset was randomly
divided into three parts for use in “training” (60%), “cross

validation” (20%), and “testing” (20%). Models were built
by learning on the training set and validating on the cross
validation set, adjusting parameter weights and hyper-
parameters for best prediction results. The final model was
then evaluated on the test set to provide the final perfor-
mance metrics. Sensitivity (“recall”), specificity, positive
predictive value (PPV or “precision”), negative predictive
value (NPV), and accuracy of the final model were cal-
culated. A more detailed discussion of the three stages,
including the importance of such a setup, can be found in
Appendix A.6.

3. Results

The study population contained 514 patients, with 227
positive findings on CT, and 287 negative findings. Table
1 gives a breakdown of the proportions of gender, demen-
tia presence, aspirin usage, injury above the clavicle, and
fall mechanisms, broken down by positive and negative CT
findings. Table 2 shows the final performance on the cross
validation dataset, while Table 3 shows the final perfor-
mance on the test dataset. Additionally, Tables 4 & 5
show the 2x2 contingency tables for the cross validation
and test datasets, respectively.

Feature CT+ CT−
Gender 75% Female 66% Female
Dementia 33.8% 44.2%
Aspirin Use 54.5% 46.9%
Injury above clavicle 75.0% 64.9%
Fall from bed 15.9% 9.9%
Fall from sitting 9.0% 17.1%
Fall from standing 63.6% 66.8%
Fall from Height 9.0% 5.2%

Table 1: Study Population Aggregated Statistics

Metric Value (95% CI)
Sensitivity (Recall) 100.00% (92.13%-100.00%)
Specificity 78.95% (66.11%-88.62%)
PPV (Precision) 78.95% (66.11%-88.62%)
NPV 100.00% (92.13%-100.00%)
Accuracy 88.24% (80.35%-93.77%)

Table 2: Final Model Performance on Cross Validation Data

Metric Value (95% CI)
Sensitivity (Recall) 97.78% (88.23%-99.94%)
Specificity 89.47% (78.48%-96.04%)
PPV (Precision) 88.00% (75.69%-95.47%)
NPV 98.08% (89.74%-99.95%)
Accuracy 93.14% (86.37%-97.20%)

Table 3: Final Model Performance on Test Data
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Predicted
Positive

Predicted
Negative

Actual Positive 45 0
Actual Negative 12 45

Table 4: 2x2 Contingency Table on Cross Validation Data

Predicted
Positive

Predicted
Negative

Actual Positive 44 1
Actual Negative 6 51

Table 5: 2x2 Contingency Table on Test Data

4. Discussion

Existing clinical decision rules for minor head injury
use age over 65 years as a predictor of high risk for intracra-
nial injury but do not differentiate level of risk among
those patients over age 65, despite only ∼2% of these
patients having any acute findings. Our results using a
trained ANN model compare favorably or exceed those
of the studies used to establish the decision strategies that
are currently being used to evaluate head trauma patients.
Granted, the reader must keep in mind that all previous
studies involve a general adult study population not lim-
ited by age ≥ 65 years or by mechanism of injury (falls
in our case). Additionally, this study represents a pre-
liminary foray into the application of ANNs to this prob-
lem, and larger cohorts with prospective, possibly multi-
institutional, data collection will be needed to validate and
refine the approach.

4.1. Significance

ANNs are powerful models in that they aim to auto-
matically learn complex, nonlinear relationships between
variables, such as those found in complex biological sys-
tems. In our situation, we have effectively taken a clinical
problem for which an effective solution has not been found,
and developed an ANN model with relatively good results
as a good first step study.

4.2. Regarding Sensitivity, PPV, Specificity, and NPV

As a quick recall, sensitivity refers to the percentage of
actual positives that are predicted correctly (the percent-
age of patients with positive CT findings that the model
“catches”), specificity refers to the percentage of actual
negatives that are predicted correctly, PPV refers to the
percentage of predicted positives that are actually positive
(the “precision” of the model), and NPV refers to the per-
centage of predicted negatives that are actually negative.

Currently in practice, all patients ≥ 65 years old pre-
senting with minor head injury after a fall receive a head
CT, which can be interpreted as “predicting” that all of
these patients are positive for acute findings. Therefore,
current practice is 100% sensitive for detecting intracranial

injuries in this patient population, yet is 0% specific. Fur-
thermore, given that only ∼2% of these patients will have
acute findings, as noted in section 1, and all of these pa-
tients are currently predicted to be positive, current prac-
tice has a PPV of only ∼2%. In other words, current
practice is only correct (precise) ∼2% of the time. Since
no patients are currently “predicted” to be negative, NPV
is undefined.

The goal in building a prediction model is to be both
sensitive and precise. Maintaining high sensitivity is im-
portant in order to not miss positive patients, and the
addition of high PPV (precision), and in turn high speci-
ficity, is important for the model to become a powerful
part of clinical care. Reynolds [27] eloquently stated in
2013 that “what we need is an analytic framework for inte-
grating regional culture into decisions about where to draw
the ‘relevance border’ around a given study’s conclusions”,
in commenting upon the difference between the multiple
studies investigating the performance of the various deci-
sion rules in North America, Australia, Netherlands, and
Spain. Reynolds further noted that the specificity of the
New Orleans Criteria at 3-5% eliminates its utility as a
mechanism to reduce CT usage in the mild traumatic brain
injury population. Constructing a model with ∼100% sen-
sitivity, but only ∼0% PPV and ∼0% specificity does not
provide benefit over simply “predicting” that all patients
are positive, such as is currently done in our clinical sce-
nario for the given subset of patients. Therefore, our goal
was to build a model with both high sensitivity and high
PPV (precision); cases in which these are both high will
in turn also have high specificity, a metric that in our ex-
perience is reported more often than PPV.

4.3. Comparison to Previous Studies

Our artificial neural network compared favorably to
previous studies. Of note, we were unable to reconstruct
the 2 X 2 table necessary to calculate sensitivity, speci-
ficity, PPV, NPV, and accuracy in all cases except the
work of Bouida W, et al. published in 2013 [28], and Sun
Ro and colleagues published in 2011 [29]. All other studies
[6, 7, 8, 9] require the reader to accept the sensitivity and
specificity as reported by the authors. Please see Table
6 for a listing of the numerous studies using risk strati-
fication to identify those patients needing head CT in a
general population with minor head injury mechanism.

Morton and Korley [30] discussed aspects of the CCHR
and NOC, as they have been shown to be the most sen-
sitive and specific at identifying patients with clinically
important intracranial lesions in those patients with mild
traumatic brain injury. In an attempt to clarify for res-
idents making decisions, they noted that the NOC uses
seven criteria, and if all seven are absent, then a CT scan
is not warranted for the patient; conversely, the presence
of one or more factors triggers the need for a CT scan.
Using this rule, the NOC had a sensitivity of 100% for
the detection of an intracranial injury, with a specificity
of 24%. They noted the CCHR to have 5 high risk factors
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and 2 medium risk factors. The presence of one or more
of the 5 high risk factors was 100% sensitive and 68.7%
specific for predicting the need for neurosurgical interven-
tion, and the presence of one or more of the seven criteria
was 98.4% sensitive and 49.6% specific for predicting clini-
cally important brain injury. The artificial neural network
performed similarly to all listed in Table 6 in terms of
sensitivity (97.8%), and greatly exceeded all in terms of
specificity (89.5%).
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Reference Patients Sensitivity Specificity
NEXUS II [7] 13,728

Clinically Important 917 98.30% 13.70%
Minor 330 95.20% 17.30%

Bouida, et al [28] 1,582
Clinically Important 13.8%

CCHR 95% 65%
NOC 86% 28%

Neurosurgical Intervention 2.1%
CCHR 100% 100%
NOC 82% 99%

Sun Ro, et al [29] 7,131
Clinically Important 9.7%

CCHR 79.20% 41.30%
NEXUS II 88.70% 46.50%
NOC 91.90% 22.40%

Neurosurgical Intervention 2%
CCHR 100% 38.20%
NEXUS II 95.10% 41.40%
NOC 100% 20.40%

any traumatic finding
CCHR 77.80% 41.90%
NEXUS II 84.90% 46.20%
NOC 91.10% 22.90%

Stiell, et al [13] 2,707
Clinically Important 8.5%

CCHR 100% 76.30%
NOC 100% 12.10%

Neurosurgical Intervention 1.5%
CCHR 100% 76.30%
NOC 100% 12.10%

Smits, et al [9] 3,181
Clinically Important 9.8%

CCHR 83.40% 39.70%
NOC 97.70% 5.60%

Neurosurgical Intervention 0.5%
CCHR 100% 37.20%
NOC 100% 3.00%

Wolf, et al [31] 12,786
CT Received 1,307
Intracranial Injury 489
Novel Criteria 90% 67%
CCHR 80% 72%

Stiell, et al [6] 3,121
Clinically Important 8%

CCHR medium risk 98.40% 49.60%
Neurosurgical Intervention 1%

CCHR high risk 100% 68.70%
Haydel, et al [8]

NOC phase 1 520 94%
NOC phase 2 909 100% 25%

Stein, et al [14] 7,955
CCHR High Risk 97% 51%
CCHR Medium Risk 99% 47%

(Continued on next page)
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National Institute of 99% 31%
Clinical Excellence

Neurotraumatology Committee 96% 47%
NEXUS II 97% 47%
NOC 99% 33%
Scandinavian 96% 53%

Korley and Morton [32] 169
CT+ 5
2008 ACEP Guidelines 80% 10.40%
CCHR 100% 36.80%
NOC 100% 3.20%

Canadian CT Head Rule (CCHR)
National Emergency X Ray Utilization Study II (NEXUS II)
New Orleans Criteria (NOC)

Table 6: Summary of Previous Studies
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4.4. Clinical Usage

Regression models are quite useful for modeling linear
relationships, and have the ability to identify important
features that correlate to the final diagnosis. These im-
portant features can then be used directly to form decision
rules for clinical practice, such as the case with the CCHR.
In contrast, ANNs lack the ability to provide explicit corre-
lations [33], but can be more effective for complex scenarios
with nonlinear relationships. Therefore, clinical workflows
with ANNs would involve direct use of the trained ANN
models, in which clinical features for a given patient would
be fed into the model, and a prediction would be produced.
The prediction could then be used by the provider as an
aid in making clinical decisions during the care of the pa-
tient, just as decision rules are used. We believe that this
is a worthwhile tradeoff for increased objective data, as the
ultimate goal is to provide the best possible patient care.

Actual use of the models in clinical workflows does not
have to be difficult though. The models could be inte-
grated into the electronic health record (EHR) so that
as the provider completed the chart during a patient en-
counter, the relevant clinical features would feed into a
built-in ANN model that has already been trained. Upon
logging all of the needed clinical features, the built-in ANN
would output the probability/prediction of acute CT find-
ings being present (for this clinical scenario), allowing the
provider to make a better-informed clinical decision about
ordering a CT.

5. Limitations

We note again that the population used in this study
is different from, and a subset of, the general populations
studied in the papers discussed in section 4.3. We specifi-
cally studied the population of patients ≥ 65 years of age
presenting with minor head injury after a fall, since no
rules have been formulated specifically for stratifying this
class of patient. Regardless, the discussions in section 4.3
are important as they allow the reader to compare the re-
sults of our study with the results and currently accepted
practices in other age groups for the similar scenario.

Additionally, the data used to “train”, “cross validate”,
and “test” the artificial neural network is retrospective and
has the limitations commonly associated with such data.
Our cohort was defined by those patients in the studied
population who received a head CT, and thus does not
include those who did not undergo a CT scan and may
have potentially had missed injuries. However, the cur-
rent state of integration of electronic medical records and
artificial neural networks is essentially nil and precludes
the collection of prospective data in this regard.

Finally, while this study represents a good first step,
larger retrospective and prospective cohorts, possibly with
multi-institutional data collection, will be needed to nar-
row the confidence intervals, refine the performance point
estimates, and validate the overall approach.

6. Conclusion

Artificial neural networks show great potential for pre-
dicting, with high sensitivity and high specificity, the need
for head CTs in patients age ≥ 65 presenting with minor
head injury after a fall. As a preliminary foray into this
application, our ANN showed comparable sensitivity, pre-
dictive values, and accuracy, with a much higher specificity
than the existing decision rules in clinical usage for predict-
ing head CTs with acute intracranial findings. We believe
that with growing amounts of medical data available from
patients, and a need to predict results for increasingly com-
plex cases, the use of ANNs may become increasingly ef-
fective. In addition to validating our approach with larger
studies, future goals could include effectively integrating
ANNs into clinical workflows, and exploring the applica-
tion of ANNs to other complex clinical cases.

Appendix A. Artificial Neural Networks

The following discusses ANNs in more depth, with spe-
cific regard to the type and formulation used in this study,
and uses information gathered from various sources [18, 21,
22, 23]. The interested reader is encouraged to consult this
appendix and the related sources for further information.

Appendix A.1. Biological Neurons

The concept and motivation for ANNs has connections
to neuroscience. As a high-level overview, neurons in the
human brain receive inputs via their dendrites, and emit
an output through a single axon. Connections between
dendrites and axons can be thought of as having varying
“strengths”, which provide for a “weighted” set of inputs.
The input pulses converge on the body of the neuron, and
if the “weighted summation” of energy in the body exceeds
a certain threshold, the neuron will fire. The combination
of many such neurons forms a biological neural network.

Appendix A.2. The Artificial Neuron

An artificial neural network is an algorithmic abstrac-
tion of these concepts largely developed in the fields of
computer science and mathematics. In the algorithmic
version, biological neurons are simulated at a basic, highly
abstracted level: each node accepts numeric inputs; as-
signs a numeric weight to each input feature; calculates
a weighted summation (linear combination) of the inputs;
adds a “bias” term (which can intuitively be thought of as
the threshold value); applies a nonlinear function to this
value; and then outputs the result. The output a, or “acti-
vation”, of a neuron for a single example can be calculated
as

a = g

((
n∑

i=1

xiwi

)
+ b

)
, (A.1)

or more concisely, using linear algebra notation, as

a = g(xTw + b), (A.2)
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where x is a vector of n input features for a single example,
w is a vector of n weights, b is a scalar threshold (“bias”),
and g is a nonlinear function. For hidden layer nodes, we
use the rectified linear unit (ReLU) nonlinear function

g(z) = max(0, z), (A.3)

which thresholds an input z at 0. For the output node, we
use the logistic, or “sigmoid”, nonlinear function

g(z) =
1

1 + e−z
, (A.4)

which maps an input z to a value between 0 and 1, allowing
for a probabilistic interpretation.

Overall, the power of an ANN arises from the nested
combination of many neurons into one overall model.

Appendix A.3. Layers of Artificial Neurons
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Figure A.1: Artificial Neural Network Diagram

Individual neurons are grouped into successive “layers”
to form a network, with a traditional layout beginning with
an “input” layer, followed by one or more “hidden” layers,
and ending with a final “output” layer. Figure A.1 shows
the relationship of the neurons in a typical example net-
work. The input layer consists of a set of pseudo-neurons,
with one for each input feature in the dataset; these sim-
ply output the value of that input, unaltered, and therefore
can simply be thought of as supplying the input data to
the rest of the network. The hidden layer is a layer of a
varying number of neurons (the exact number is decided
upon while training), where each neuron receives and pro-
cesses all of the outputs of the input layer (which are just
the unaltered inputs) using equation A.2 & A.3. The out-
put layer consists of k neurons equal to the number of
target outputs given in a vector y for each example in the
dataset, with each neuron receiving and processing all of
the outputs of the hidden layer using equations A.2 & A.4.
For a dataset with a single “true”/“false” answer for each
example (such as the presence of an acute CT finding rep-
resented in the dataset by a single y value equal to 1 or

0), there would be one neuron in the output layer, with
the output a equal to the probability that the answer is
“true”. As an alternative example, for a dataset where the
answer for each example could be one of k different pos-
sibilities, or “classes” (such as k different diseases), there
would be k neurons in the output layer, each outputting
the probability of its respective class (respective disease)
being “true”.

The hypothesis h(x) of the overall network,

h(x) = aoutputs, (A.5)

is equal to a vector aoutputs consisting of the output values
of the output neurons, with each value interpreted as the
probability of the respective answer being “true” (a value
of 0 would suggest that the answer is “false”).

Appendix A.4. Flow of Information

In an ANN, information flows one layer at a time to-
wards the output neurons, performing all of the processing
for a given layer before moving on to the next layer. For
a single example (single patient in our case), the input
neurons are provided a vector x of n features for the ex-
ample (single patient), and an output hypothesis vector
is obtained once the processing is complete. For an en-
tire dataset, this process is effectively repeated for each
example, although in practice it will be done in parallel by
making use of matrices.

Appendix A.5. Learning

In order for the ANNs to learn how to correctly predict
results, the “θ parameters” (weights and bias collectively)
for each neuron must be adjusted in a “training” step.

To begin, the network develops a hypothesis vector for
each example (each patient) in the “training set” based on
the associated input features. The hypothesis for the ith

example (ith patient) is then compared to the example’s
target outcome y to determine the measure of fit (“loss”
or “cost”) for that example.

Given our ANN architecture, the “loss” or “cost” for
an example i can be computed as

L
(i)
data = −y(i)

T
log(h(x(i))) − (1 − y(i))T log(1 − h(x(i))),

(A.6)
where y(i) is the target outcome vector for the ith example

(patient), and L
(i)
data is a scalar value that is the negative

log likelihood assuming a Bernoulli distribution. Essen-
tially, this loss is a measure of how well the hypothesis
h(x(i)) matches the target y(i) for the ith example.

In addition to the loss for the data, we also introduce
an “L2 regularization” term,

Lreg =
λ

2

∑
[(w

(l)
ij )2], (A.7)

that sums all of the squared weights in the network, where
l equals the layer number, ij refers to the connection be-
tween the jth neuron in layer l and the ith neuron in layer
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l+ 1, λ (“lambda”) equals a hyper-parameter that adjusts
the level of regularization, and Lreg is a scalar value. This
regularization term places a zero-mean Gaussian prior on
the weights, and is used to promote generalizability of the
network and prevent “overfitting” by incurring a high loss
for large weight values.

The overall loss of the ANN for the entire dataset is
then computed as

L(θ) =
1

m

m∑
i=1

L
(i)
data + Lreg, (A.8)

where the first term is the average data loss over m ex-
amples, and the latter is the regularization term. A high
loss L indicates that the model is performing poorly (due
to large prediction errors for the examples, and/or large
weight values reducing generalizability).

The final step is to minimize the loss L for the train-
ing set of patients by adjusting the network θ parameters
(weights & biases). For this step, we use a method known
as “minibatch gradient descent”. This step is performed
by mathematically computing the partial derivatives of the
loss L with respect to the individual θ parameters, and
then adjusting each of the parameters by a small fraction
of their respective partial derivative in the direction that
minimizes L. The simplistic version of this update can be
stated as

θ
(l)
ij := θ

(l)
ij − α

∂L(θ)

∂θ
(l)
ij

, (A.9)

where l equals the layer number, ij refers to the connection
between the jth neuron in layer l and the ith neuron in layer
l+1, and α equals a “learning rate” hyper-parameter that
controls the magnitude of parameter updates. The partial
derivatives can intuitively be thought of as the contribu-
tion (magnitude & direction) of each of the θ parameters
to the loss L, with the direction pointing towards increas-
ing values of L. Thus, by adjusting the θ parameters in the
opposite direction, the loss L can be reduced, increasing
the performance of the model. Note that in practice, we
use a slightly different formulation known as Adam [34],
which has better convergence properties.

These training steps are repeated for the training dataset
until the loss L is sufficiently minimized, which we discuss
further in section Appendix A.6.

Appendix A.6. Regarding Training, Cross Validation, and
Testing

The following discusses each stage of the procedure in
more detail, including the importance of such a setup.

Appendix A.6.1. Training

In this step, the neural network is trained to learn to
correctly predict the results of the “training” set of pa-
tients by adjusting weights and bias values of the model
per Appendix A.5. We cycle through the list of train-
ing patients repeatedly, performing learning and evalua-
tion of error each cycle, until the average loss L across all

of the training patients begins to decrease only minimally.
Intuitively, this step is analogous to a student studying
notes and self-quizzing. In this stage we also adjust vari-
ous hyper-parameters (number of hidden layers & neurons,
cycles of training, regularization, data inputs, etc.) to cre-
ate different possible models. The models with sufficiently
low training error can be seen as the different possible “hy-
potheses” for the given problem. Since the models are at-
tempting to learn from the data in this step, a sufficiently
large portion of the overall data is needed; heuristically,
60% is generally considered an effective amount.

Appendix A.6.2. Cross validation

In this step, the various training models (“hypotheses”)
are “validated” on a separate, smaller “cross validation”
(CV) set of data to select the best model, which will be the
one with the best performance on this CV set. No learn-
ing occurs during the CV stage, and the models are simply
evaluated for performance; this is analogous to a student
repeatedly taking a practice test in which only the grade
is given, adjusting study techniques in between. This step
ensures that the neural network is learning the (complex)
relationships between input features during training, with-
out simply memorizing the training examples (training pa-
tients), and is accomplished by selecting the best hyper-
parameters to allow for such learning. Learning feature
relationships is key to the goal of the model being able to
predict results for new patients in clinical scenarios; just
being able to determine the correct answer for past pa-
tients is not useful clinically. As there may be multiple
hypothesis models that have low training error, this step
is necessary to select the best model, which is the one
that generalizes to this new set the best. Furthermore,
we often will repeat the training and CV steps multiple
times in order to ultimately select the best combination
of hyper-parameters. Since this step is used to validate
models, rather than teach them, a smaller portion of data
is needed than for training; 20% is generally an effective
amount.

Appendix A.6.3. Testing

Finally, once we feel that our model has actually “learned”
and has been selected for maximum performance on the
CV data, we evaluate it on another separate, small set of
“test” patients and report the results on this test set as the
final performance of our model, as seen in section 3. This
step effectively allows the study to be replicated within the
study itself, as this test set of patients is not used by the
model during the rest of the training process, and there-
fore acts as a completely new set of patients. Since the
algorithm selects for the model with the best performance
on the CV set of data, the model is implicitly tied to the
CV set. In contrast, the test set is only used to evaluate
the final model, and is never used as a means of selecting
models. Therefore, the test set of data is not tied to the
model, and thus can unbiasedly determine the model’s fu-
ture effectiveness in clinical scenarios; this is analogous to
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a student taking a final exam. As with the CV set, using
20% of the original data is a generally effective heuristic.

Appendix A.7. Regarding Hyper-Parameters

Using cross validation (sections 2.4 & Appendix A.6)
with randomized hyper-parameter search [35], a hypoth-
esis model with the settings & hyper-parameters listed
in Table A.7 was selected as the final model. Hyper-
parameters included: number of hidden layers; number
of hidden neurons per hidden layer; λ value used in reg-
ularization; and a “probability threshold” with which to
interpret the hypothesis of the network. This probability
threshold is not to be confused with the intuitive idea of a
neuron threshold, and is used in this context to interpret
the hypothesis values (which are probabilities between 0
and 1) as equating to either “true” or “false”. Values above
the threshold value are considered “true”. The random-
ized hyper-parameter search allowed us to test large ranges
of possible values while quickly narrowing down on ideal
ranges, leading to the final combination.

Setting/Hyper-parameter Value
Num Input Neurons 8
Num Hidden Layers 1
Num Hidden Neurons/Layer 25
Num Output Neurons 1
λ (Regularization) 0.001
Probability Threshold 0.18

Table A.7: Final Model Settings & Hyper-parameters

Appendix A.8. Regarding Skewed Classes

Rare conditions are common in the medical world, how-
ever, attempting to model these situations in which there
will be a large class imbalance if data is gathered com-
pletely randomly can lead to difficulties in learning, as
noted by Mazurowski, et al. [25]. If a rare condition (such
as that presented in this paper) is only present in a limited
number of examples in the dataset (corresponding to the
natural prevalence of that condition), then a model that
tends to predict the “negative condition” for all examples
may seem to have high performance as measured by low
test error, 100% specificity, and high accuracy. However,
this model would have a sensitivity of 0%, and thus would
not be effective for clinical (or any other kind of) usage.

Models such as ANNs or logistic regression models need
to learn the characteristics and feature relationships of
both positive and negative cases in order to create a “deci-
sion boundary” that can effectively separate the two pos-
sible conditions [18]. The prevalence of the condition is
not used with these types of models. If there is only a lim-
ited number of examples of positive cases as compared to
negative cases (and vice versa), it becomes much more dif-
ficult for the models to learn relationships, and thus perfor-
mance will be impacted. Therefore, an effective strategy is
choice-based sampling [24] in which roughly equal numbers

of both positive and negative cases are gathered. Learning
an effective decision boundary allows the model to prop-
erly distinguish between positive and negative cases, thus
allowing it to achieve both high sensitivity and high speci-
ficity.

Appendix A.9. Regarding Feature Correlation

Logistic regression models determine coefficients for
each input feature, calculate a weighted sum from these
coefficients and an example set of inputs, and then di-
rectly transform this sum to a value between 0 and 1 to
output a probability of the answer being true. In these lo-
gistic regression models, since the coefficients are linearly
related to the output, the features corresponding to the co-
efficients with the greatest magnitudes can be interpreted
as being correlated to the final diagnosis. Thus, if we are
able to model a problem with linear methods, then we can
use the important features directly as clinical markers to
form decision rules.

ANNs compute several nonlinear transformations of
the original inputs before outputting a result. Thus, the
coefficients for the input features are not linearly related
to the outcome, and cannot be interpreted as correlations
to important features. Therefore, effective clinical usage
of ANNs would involve the use of the model itself to form
predictions, as discussed in section 4.4, rather than an in-
terpretation of correlated clinical markers forming decision
rules.
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